
Theor Chim Acta (1987) 71:169-186

�9 Springer-Verlag 1987

Extracting more than a few eigenvectors from a dense real
symmetric matrix: Optimal algorithms versus the
architectural constraints of the FPS-X64

Stephen T. Elbert

Ames Laboratory-USDOE*, Iowa State University, Ames, IA 50011

(Received October 6, revised December 4/Accepted December 5, 1986)

Ten widely available sets of routines, including HQRII , QCPE GIVENS and
EISPACK 3, were evaluated for reliability, robustness, accuracy, speed, com-
pactness, portability and simplicity. All were found lacking in one or more
areas. Modified versions of the EISPACK routines TRED3, TQLRAT, TIN-
VIT and TRBAK3 performed somewhat better. Changes to TINVIT were
especially important for improved speed, accuracy and reliability. To achieve
the maximum capabilities of the FPS-X64 series of computers access to table
memory is required, but since the FORTRAN compiler does not allow this
and there is no library support for the required operations, it was necessary
to write three routines in APAL. The standard algorithm needs to be modified
before full efficiency can be achieved for the back transformation.

Key words: Diagonalization - - e igenvector-- Inverse - - Iteration - - House-
holder - - Givens, E I S P A C K - - HQRII

I. Introduction

The need to determine wavefunctions and their associated frequencies (vibrations,
energies) is pervasive throughout computational chemistry and physics. The
solution of this problem is the solution of the eigenvalue problem. Given a real

* Operated for the US Department of Energy by Iowa State University under contract no. W-74-05-
ENG-82. This work was supported by the Office of Basic Energy Sciences

170 S.T. Elbert

symmetric matrix A of dimension n, a matrix X containing m orthogonal column
vectors of length n and a diagonal matrix D whose diagonal element d~ is the
eigenvalue of Xi, the matrix representation of the problem, A X = XD, appears
in many guises, not the least of which is the time-independent Schr6dinger
equation: H ~ = E ~ .

In ab initio quantum chemistry programs, the eigenvalue problem appears in the
solution of both self-consistent field (SCF) and configuration interaction (CI)
wavefunctions, although in quite different forms. In the SCF problem, eigenvec-
tors for all occupied orbitals must be found, although all vectors, including
unoccupied ones, are usually found. The extraction of the vectors in an ab initio
SCF calculation is not the time-limiting step so the efficiency of the method is
not as important as reliability and accuracy. Matrices in SCF problems are
memory resident and may range in size from 101 to 103. CI calculations, on the
other hand, typically involve large matrices that are not memory resident (in fact
the matrix itself never exists as such in direct CI methods), only a few vectors
are needed, typically less than 10, and the vector solution is the time-limiting
step. The largest dimension feasible with current computers is on the order of 10 7.

As may be deduced from the disparity between SCF and CI environments, there
is a considerable difference in the methods used to solve these two eigenvalue
problems, even though they both deal with real symmetric matrices. The fact that
the large matrices are usually sparse need not complicate the comparison. The
basic properties of the methods are independent of whether the matrix is dense
or not. The conventional distinction has been between methods dealing with
small (memory resident) and large (non-memory resident) matrices. Small matrix
methods usually involve an initial transformation, which becomes impractical if
the matrix is not memory resident, before the actual solution is begun. Large
matrix methods avoid this step. Given the amount of memory available on current
systems however, where one million words (8 MB) may be considered small and
the Cray 2 has 256 million words (2048 MB) of memory, this distinction is less
appropriate. Indeed, large matrix schemes like the Davidson [1] method can
generally find a single eigenvector for a small matrix faster than the standard
small matrix methods.

A more appropriate division among methods is not the size of the matrix but the
fraction of the eigenvectors computed. The crossover point between large and
small matrix methods may be found by comparing the number of multiply and
add operations (MAO's), to highest order, for a dense matrix. Large matrix
methods require CtKmn 2 MAO's to obtain m vectors of length n. Here C1 is a
proportionality constant and

Km = ~ g j = m A t
j=l

with Kj the number of iterations required to obtain vector j and/~1 the average
number of iterations per vector. Small matrix methods require Cln3+ C2n2m+
C3Rsn2m MAO's. C1, (22 and Ca are again proportionality constants and/~s is

Extracting more than a few eigenvectors from a dense real symmetric matrix 171

analogous to /(l. When the eigenvectors are found using a QR (or a related
method such as QL) the product C3g~s is typically in the range of four to twelve,
but since the most efficient algorithms, i.e., those using the inverse iteration
technique, have C3 essentially zero, the following analysis does not involve Ca.
Equating the MAO's for the large and small matrix method and solving for rn gives

C 1 rt

m = c t g l _ C2 n g .

Reasonable values of the constants are one for Cg and C2 and two-thirds for C1,
so when/(1 is eight the small matrix methods are more efficient if at least 10%
of the vectors must be computed. If the vectors could be found with an average
of four iterations each, a possibility with a quadratically convergent method or
a very good initial guess, the breakeven point goes up to about 20%. Such a high
breakeven point is probably unrealistic for another reason. Many of the large
matrix methods, Davidson [1] and Lanczos [2] in particular, need to find all of
the eigenvectors in an expansion basis subspace that start with a dimension equal
to the number of basis vectors sought. Convergence is enhanced by adding that
number of basis vectors to the sub-space on each iteration. In a hypothetical case
seeking 20% of the vectors, by the fourth iteration all the vectors of a matrix of
dimension 0.8n must be found. It thus appears that when about 10% or more
of the eigenvectors are required, a small matrix method should be used. Less
than 10% of the dimension of the matrix is considered to be a few eigenvectors.

Although ab ini t io SCF methods may soon need to diagonalize Fock matrices of
order 103, the construction of the matrix is an n 4 time step, whereas its solution
is only n 3. Sufficient parallel computation may be able to reduce the construction
phase to n 3, so efficient diagonalization methods may become important. Of more
serious concern are semi-empirical SCF methods whose construction phase is
already of order n 3. Calculations on biologically active molecules using 103 basis
functions will soon be common. Purely empirical methods, such as the various
Hiickel approaches, require only n 2 time in the matrix construct phase. First
principle local density function calculations by solid state physicists routinely
find ten percent of the vectors of matrices of order 1000 to 2000. These calculations
spend fully ~ of their time finding eigenvectors in an algorithm that iterates to
self-consistency. Since the matrix needs to be memory resident, the availability
of memory has been a constraint in the past. Larger memories are putting an
even heavier demand on the eigenvector routines. Problems of this nature involv-
ing 20 000 basis functions should be possible on the Cray 2, allowing the first
realistic calculations of impurities in metal clusters�9 Solving large eigenvector
problems are also common in computing both vibrational and photoionization
spectra. Quantum molecular dynamics is another area requiring efficient
diagonalization routines. In his studies of HF-HF, Truhlar [3] has diagonalized
300 matrices of dimension 948. Obviously there is a clear need for an efficient
method to find more than a few, i.e., from ten percent to all, of the eigenvectors
of a dense real symmetric matrix with dimensions of order 103 o r 104.

172 S.T. Elbert

2. Basic theory

The methods discussed here can be broken into four parts: (1) reduction to
tridiagonal from; (2) evaluation of the eigenvalues; (3) evaluation of the eigenvec-
tors in tridiagonal form and (4) transformation of the vectors back to the original
matrix form. The operations are not necessarily carried out in this order. Methods
that do not follow this pattern, for example Jacobi [4], are not competitive in
solving an arbitrary symmetric matrix.

Householder 's method [5] is the most efficient way to form the tridiagonal matrix.
A similarity transformation

Ai+l = PiAiPi, i = 1, 2 , . . . , n - 2

is constructed from a set of reflectors,

P i = I - u i u f / H i , Hi=uirui /2

each one of which zeros out all elements of a row and column with the exception
of the diagonal and codiagonal elements. This is usually implemented as a rank
2 update that first computes

Pi = A i u i , (1/3n 3MAO's)

and then

Ai+l = A i - u~qT- q~uT, (1/3n3MAO's),

where

Ki = ufpi/2H~ q, =pi /Hi -K,u~, (O(n2)MAO's).

The total operation count is thus 2/3n 3 MAO's, which is half the number of
operations required using the Givens' plane rotation approach [6].

A wide number of methods have been used to compute the eigenvalues of the
tridiagonal matrix. The most efficient are variations on the QR or QL methods.
This step requires only order n 2 operations, but the complexity of the algorithms
may preclude vectorization. This, and the fact that the eigenvalues are computed
by an iterative method, may make the proportionality constant quite high (Parlett
[7] uses a value of nine).

There are two common ways to get the eigenvectors of the tridiagonal matrix.
The first and most reliable is to accumulate the plane rotations generated by the
QR/QL process. This method is of order n 3, but is appropriate only if all the
eigenvectors must be found. The second method is inverse iteration and is
generally of order n 2. Since it finds the eigenvector of a given eigenvalue, the
specification of whether to compute a few or all of the vectors is easily controlled.
Much has been written about the stability of inverse iteration [7] and it is generally
considered a safe technique. Inverse iteration usually converges in one or two
cycles, but it does occasionally fail to converge. For this reason it may be necessary
to provide a QR/QL routine as a backup if computing all the eigenvectors is
appropriate.

Extracting more than a few eigenvectors from a dense real symmetric matrix 173

The final step is to recover the eigenvectors of the original matrix. This may be
accomplished by accumulating the reflectors

n - - 2

z = 11 (I -u ,uT /Hi) . Zo
i = l

either onto a unit matrix, as in the QR/QL variant using 2/3n 3 MAO's, or onto
the tridiagonal vectors usirag In 3 MAO's.

Using inverse iteration, a total of approximately 5/3n 3 MAO's is required. In
contrast, when a Q R / Q L method is used to find the vectors, at least 10/3n 3
MAO's will be required, and frequently two or three times that number.

3. Evaluation procedure

Since some numerical analysts consider the understanding of the basic theory
"essentially complete" [7], the choice is really which is the best implementation.
As anyone knows who has had one of the standard routines fail, this is not a
trivial task. To guide the choice, a list of attributes that can be measured with
some objectivity is required. These attributes include speed, compactness,
accuracy, reliability, robustness, portability and simplicity.

Speed is an obvious and important attribute and one that is easy to measure. The
simplest approach is to make direct measurements of the time required to carry
out the various sections of the calculation. Reasonable estimates may also be
made based on the formal complexity of the algorithm, the time required to carry
out individual operations and, where appropriate, the number of iterations
involved. Here, direct measurements were made for each of the four steps. Even
when one process was embedded in another, the appropriate sections were timed
independently.

Compactness is a measure of the memory required to carry out a task. Methods
that store the matrix in packed or symmetric storage mode where A(1)= A l l ,

A(2) = A~2, A(3) = A22, A(4) = A 1 3 , . . . , which require only n(n + 1)/2 words for
the input matrix, are usually preferable unless the output vectors can overwrite
the input matrix. No local storage should ever be necessary; array storage should
be provided by the calling routine.

Accuracy means producing the correct results with sufficient precision. Some of
the methods tested require the calling routine to specify a level of accuracy by
giving a threshold value for convergence. Most of the time the algorithms used
by the tested routines were capable of producing results with near full machine
precision with no significant increase in time. For this reason it is preferable to
have a routine that handles accuracy automatically and thus avoids a possible
source of error by specifying an inadequate amount of precision in the calling
routine. Measuring accuracy is not difficult but it is time consuming. Sometimes
accuracy is measured by comparing the results with those produced by the same
routine (or a more reliable one) in extended precision. This approach is not
generally useful, as some machines do not support precision beyond the working

174 S.T. Elbert

precision (generally a 64 bit word) and it may be very slow and expensive to use
on machines that do support it. Such absolute error methods also make it difficult
to compare the same routine on different machines. Accuracy is measured here
by computing the normalized relative residual [8]

IIAX, - A,X, II
p = max

l_<,_~n 1 0 . n . ~ . Ilall" IrX, ll"

The norms are 1-norms and e is defined as the smallest value that may be added
to one such that the result is different from one. The value of ten in the expression
for p was chosen empirically so the following statements would hold: (1) a value
less than one indicates satisfactory performance; (2) a value greater than 100
indicates poor performance and (3) a value between one and 100 indicates a
progressively marginal performance.

Reliability refers to the probabili ty of failure and as such is difficult to measure.
The method should produce accurate results most of the time and signal when /
it cannot. Producing no result is much better than producing erroneous results.
For this reason the routines were tested with pathological matrices to see how
well they handled themselves in difficult situations. Failure to produce results
should not be considered a deficiency in a high performance routine if the failures
are infrequent and the failure is communicated to the driving routine, which can
then call a slower, more reliable, routine.

Robustness is closely related to reliability. A robust routine fails gracefully and
without surprises. A robust routine does not work well with one matrix and fail
completely on a similar one. It takes more time or produces less accurate results
in a predictable manner as the problem becomes more difficult. Robust routines
do not abort in the middle of a calculation because of arithmetic exceptions.

To measure the reliability and robustness of the routines, several test matrices
were used. Each of the matrices was defined in a manner that allows it to be
generated for any given dimension. All the eigenvectors for each matrix were
calculated using the following 22 dimensions: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20,
25, 30, 35, 40, 45, 50, 75, 100, 125 and 500. Note that an equal number of even
and odd dimensions were tested. The first few values check special cases, while
the final value was used for speed comparisons. Most of the matrices were chosen
to present a variety of difficult situations so that a qualitative assessment of
reliability and robustness could be made. Matrices representing real problems
were also included to assess performance in a more normal environment. The
following test matrices [9] were used:

1) NULL. This matrix is all zeroes. A good routine will set the eigenvalues to
zero and return a unit matrix while doing very little work. A mediocre routine
will return an error code. A bad routine will abort when it attempts to divide by
zero.

2) D I A G D N . This is a diagonal matrix with descending values along the diagonal,
i.e., Aii= n - i + 1.

Extracting more than a few eigenvectors from a dense real symmetric matrix 175

3) WlLKWP. The Wilkinson W § matrix is a tridiagonal matrix whose diagonal
elements are defined as Aii= [n / 2] + 1 - min (i, n - i + 1) where [b] is the largest
integer less than or equal to b. The codiagonal elements all have a value of one.

�9 The separation of the two largest eigenvalues is n !-2. A good method will spot
this as a tridiagonal matrix.

4) WILKWM. The Wilkinson W - matrix has the same form as the W § matrix
except Ai~ = In /2] + 1 - i. For odd order, this matrix has pairs of eigenvalues that
are equal in magnitude but opposite in sign. The magnitudes are close to some
of those of the corresponding W § matrix.

5) ONES. This matrix, consisting entirely of ones, is of rank 1 (only one non-zero
eigenvalue) and singular. Its solution in exact arithmetic is trivial, but rounding
errors on some machines can result in disaster.

6) BORDER. This highly degenerate matrix (n - 2 eigenvalues equal one) is zero
everywhere except on the diagonal, where Aii = 1, and in the last row and column,
where Ain = Ani = 2 1 - I .

7) FRANK. This matrix, with A 0 = min (i , j) , is reasonably well behaved.

8) MOLER. This matrix has diagonal elements A~ = i and off-diagonal elements
A o = min (i , j) - 2 . It too is reasonably well behaved, although it has one small
eigenvalue.

9) NESBET. All off-diagonal elements of this matrix are cne and the diagonal
elements are split into two ranges. For i -< 5, A~ -= 1 +0.1 (i - 1). For i > 5, A, = 2i -
1. This matrix has been frequently used in testing large matrix methods.

10) HRING2. This matrix is the Hiickel representation for two independent rings
where one ring has even indices and the other odd indices. The matrix elements
are zero except A~,i-2 = A~_2,~ = - 1 , Al ,n_ 1 = An_l , 1 --- - 1 and A2,. = A.,2 = -1 . The
resulting eigenvectors preserve this structure, i.e., except for the two lowest
eigenvectors, every other element of the vector is zero. Methods that do not
provide adequate orthogonality fail to do this.

11) D I N D O N . The ding dong matrix is defined as A 0 = 0.5/(n - i - j + 1.5). This
matrix is always represented inexactly and has clusters of eigenvalues near + ~-/2.

12) HILSEG. The Hilbert segment of order n is defined as A~j = 1 / (i + j - 1).
This matrix is notorious for its logarithmically distributed eigenvalues. Although
positive definite, it is so ill-conditioned that Nash [9] claims most eigenvalue
algorithms will fail for some value of n < 20.

Portability means a routine requires no changes other than those related to
precision when changing machines. Portable routines to evaluate machine depen-
dent constants are readily available. To check portability, each routine was run
on a DEC VAX-11/780 and an NAS 9160 in addition to the FPS-164. The 9160
is an IBM compatible machine with a vector processing facility. A few selected
routines were also run on a Cray X-MP/24 and on its compatible the SCS-40/14.

176 s.T. Elbert

Finally there is simplicity. Simplicity means that a routine is easy to use and easy
to modify. A routine is easy to use when it has a well-documented set of calling
parameters, no local storage and no COMMO N blocks. Since modifications at
some point are inevitable, be they for tuning purposes or because a better
algorithm has been found, routines must be modular. Modularity helps clarify
the structure of the algorithm and insure that changes to one section do not affect
others. Small, modular routines are much easier to tune and thus encourage more
efficient utilization of resources.

4. Routines evaluated and results

Although it has not received the intensive development effort of LINPACK [10],
EISPACK [8] is the standard for comparison when dealing with routines to solve
eigenvalue equations. EISPACK was originally a collection of FORTRAN
routines that were direct translations of Algol procedures developed in the 1960's
by nineteen different authors [11]. One of the side effects of the translation was
decreased performance due to inefficient memory access resulting from the
different way arrays are stored in Algol (by row) and FORTRAN (by column).
The latest edition, version 3, has resolved this problem, at least as far as symmetric
matrices are concerned. Other improvements in version 3 include improved
portability and a new driver, RSM, that uses inverse iteration. In earlier editions
users needed to supply their own drivers to use the inverse iteration routines in
EISPACK. Unfortunately, RSM does not use the more memory efficient packed
form of the input matrix. The RS routine does not use packed form either but,
because it uses a QL method to obtain vectors, it can accumulate the vectors on
top of the input matrix. RSM can't do this because the reflectors need to be
preserved until after the tridiagonal vectors are generated, resulting in twice the
storage requirements of RS. The only driver to handle the input matrix in packed
form is RSP, which also uses a QL method for the vectors but does not do the
back transformation until after the tridiagonal vectors have been found. This
makes it slower and less compact than RS. Since all the vectors must be found
when using the QL approach, RSM is the only driver offering the choice of
finding the m lowest vectors. Several improvements to this situation are immedi-
ately obvious. One would be to modify RSP to be as efficient as RS. Another
would be to allow RSP access to the inverse iteration routines as RSM does. This
latter change is very easy to do and is called RSPII here. RSPII has the same
performance characteristics as RSM but uses less memory; in fact, if less than
half the vectors are needed, RSPII uses less memory than RS.

The only routine to produce satisfactory results for all matrices on all three
machines was RS (calling TRED2 and TQL2). From this standpoint it is reliable
and accurate. Since there were no failures, graceful or otherwise, it appears to
be reasonably robust, although the times produced by TRED2 for the ONES
matrix, shown in Table 1, do not scale correctly, indicating room for improvement.
This problem was caused by an inconsistent ability to finish the tridiagonalization
after the first similarity transformation, a problem TRED3 also suffers from. Since
it accumulates vectors from QL rotations, it is not one of the faster routines. RS

Extracting more than a few eigenvectors from a dense real symmetric matrix 177

Table 1. Milliseconds to tridiagonalize ONES matrix for FPS-164

n TRED2 a TRED3 ETRED3

10 0.65 0.51 0.56
15 1.61 1.34 1.43
20 4.73 3.41 2.11
25 6.26 5.82 2.94
30 9.62 13.17 3.80
35 7.84 7.06 5.01
40 19.40 19.42 6.24
45 33.66 32.13 7.59
50 50.81 50.78 9.14
75 79.01 84.46 18.80

100 95.21 100.76 31.90
125 366.08 416.37 48.49

a Tridiagonalization time only; reflector accumulation not included

is very compact, requiring only n2+2n words of memory and very portable.
Improvements to the clarity and structure would improve its simplicity. In
particular, TRED2 could be made more modular by splitting it into separate
routines to generate and accumulate the transformations. The version of RS
supplied by FPS in their subroutine library did not do as well as the EISPACK
RS. The FPS version indicated a failure to converge the first eigenvalue for any
NULL matrix, for ONES with n = 5 , 7, 9, 15 and HRING2 with n = 4 . The
APMATH64 Manual [12] indicates that IMTQL2 is used instead of TQL2.

As expected, RSP (calling TRED3, TQL2 and TRBAK3) generally p r o d u c e d
results comparable to, but slower than, RS; requiring 6% more time on FPS,
10% on VAX and 21% on NAS. RSP is not as robust as RS, however, with
TRED3 generating two overflow conditions on the NAS machine (ONES, n = 25,
35) and one on the VAX (BORDER, n = 40). The FPS is normally run with
arithmetic exceptions disabled because the compiler will sometimes process
undefined values at the higher optimization levels. The results indicated satisfac-
tory operation for FPS. As previously noted, RSP is not a compact routine,
requiring (3n2+7n)/2 words of memory.

RSPII (calling TRED3, IMTQLV, TINVIT and TRBAK3) encountered the same
overflows as RSP. In addition, TINVIT failed to converge for several cases. When
it did converge, the values of the residual were generally larger than with RS or
RSP. Values of p up to 6.2 were observed and the trend was towards larger values
with larger matrices. RSPII thus had problems with reliability, robustness and
accuracy. For n = 500 it required only 26% of the time needed by RS on the
FPS, 35% on the VAX and 50% on the NAS. It requires n2/2+ rim+21~2 words
of memory, so its compactness depends on how many vectors are required. Its
portability and simplicity are the same as the other EISPACK codes, which is
to say the clarity and structure of the code could be improved. RSM (calling
TRED1, IMTQLV, TINVIT and TRBAK3) should exhibit the same performance
characteristics as RSPII except for not being as compact.

178 S.T. Elbert

A common way to speed up codes to u se the L I N P A C K BLAS [10]. These
routines are usually specially coded in an assembly language for improved vector
performance. A modification of RSPII, referred to as RSPIIB, uses S / D D O T
and S / D A X P Y in TRED3 and TRBAK3 and S / D N R M 2 in place of PYTHAG
in~TINVIT. The effect on the time is shown in Table 2. The most dramatic change
is in TINVIT, where P Y T H A G is a very inefficient way to compute the Euclidean
norm of a vector. S / D N R M 2 is used instead of S / D D O T because of the potential
for overflow here. Otherwise, the BLAS are a mixed blessing. The additional
calling overhead slows down scalar machines and even vector machines when
short vectors are used. Vector machines with good compilers may produce
machine code as good as that available in the BLAS, but without the overhead
of a subroutine call. TRED3 processes many short vectors, even for large matrices,
thereby raising the payback level substantially when the BLAS are called.

There are a number of routines in common use that are similar to the EISPACK
routines. One is D I A G D from the Gaussian 82 [13] set of programs. For com-
parison purposes D I A G D was modified to make it portable and to treat only
real matrices. It will be called G D I A G D here. These routines appear to be an
independent translation of the Algol routines that are the basis for EISPACK.
It is similar to RSP, but with a different technique for handling tolerances.
Satisfactory results were obtained for all matrices on the FPS and NAS machines.
The VAX produced some very poor results for H I L S E G (n - 10) and D I N D O N
(n = 25). D I A G D uses G floating arithmetic on the VAX while G D I A G D uses
the default D floating arithmetic, which has a smaller dynamic range. G D I A G D
uses the older Algol-influenced addressing scheme in the equivalent of TRED3,
so it is slower than RSP in that section and as fast as RSP elsewhere. The
tridiagonalization times scaled correctly for the ONES matrix on the NAS
machine, unlike RSP.

In the N R C C program GAMESS [14] there is a routine called GIVEIS written
by Cleve Moler and Dale Spangler. It uses modified EISPACK2 versions of
TRED3, , IMTQLV, T I N V I T and TRBAK3. The modifications consisted of
improving the addressing scheme and calling the L I N P A C K BLAS. GIVEIS
requires an explicit machine epsilon value, which has been left at 2 -50 for all the
machines used. It experienced the same overflow and other robustness problems

Table2. Ratio of execution times RSPIIB/RSPII to diagonalize NESBET

Dimension Machine TRED3 TINVIT TRBAK3

n = 50 FPS-164 1.41 0.32 1.03

VAX-11/780 2.24 0.49 1.11

NAS 9160 0.95 0.41 0.53

n = 500 FPS- 164 0.90 0.31 0.75
VAX-11/780 1.24 0.58 1.08

NAS 9160 0.30 0.45 0.20
Cray X-MP 1.27 0.34 0.82

Extracting more than a few eigenvectors from a dense real symmetric matrix 179

as RSP. If TINVIT fails to converge, which happened (though not as often as it
did for RSPII), TQL2 is called if all eigenvectors are being computed. The vers ion
of TINVIT used by GIVEIS suffers from another problem that was remedied in
version 3, namely a grouping tolerance for degenerate vectors that was too right.
This resulted in excessive effort going into orthogonalizing the vectors. This can
be seen in the O(n 3) time spent in TINVIT for the NESBET matrix (Table 3).
The major flaw is its unreliability. Completely wrong results were produced
without warning for the D I N D O N matrix around n = 50 on all machines and
for NESBET (n = 500) on the NAS.

Several routines whose development was unrelated to EISPACK were also
evaluated. The GAMESS program had another routine named LIGENB, which
uses a packed input matrix, that is a modified version of the Gaussian 82 routine
EIGEN, which does not use a packed input matrix. The version used here was
further modified to remove local storage and to use the BLAS S /DROT to perform
the rotations. LIGENB accumulates vector rotations and is similar to RS in speed,
but it is very unreliable. The FPS version doesn't work at all and there were
overflows and poor results produced frequently on the other two machines.

Long a favorite in many programs because it was faster than the standard
EISPACK drivers is the QCPE routine GIVENS written by Franklin Prosser
[15]. This routine uses a Sturm sequence method to find the eigenvalues and
inverse iteration to find the vectors. As with other older code, machine dependent
constants need to be set. This version (62.3) was modified to call the EISPACK3
routine EPSLON to obtain a value of the machine epsilon. The value of THETA,
specifying the dynamic range, was set to 1037 f o r all machines. For most cases
the routine produced satisfactory results, certainly better than routines calling
TINVIT, but there were several cases of poor results for BORDER and HRING2.
There is no error return code to warn of these cases. It is certainly not a simple
routine.

Another recently popular routine that has spawned many local versions is HQRII
[16]. The original version was similar to RSM (the unpacked form of the matrix
was used) except that a QR method was used instead of QL. The version used
here has been adapted for packed matrices and was obtained from QCPE. QCPE
supplies another routine, DIAHOU, which is yet another version of HQRII that
uses a Givens' bisection method when m/n < 1/4. There were minor, but not
notable, differences in the performance of the two routines, so only HQRII is
discussed here. The eigenvalue convergence tolerance, which is user specified,
was set to 16.EPSLON(1.0). The routine produced wrong results for ONES,
BORDER, HRING2, D I N D O N and HILBERT and has no error reporting
mechanism. Divide checks occurred for NULL. When it worked, the results were
generally better than TINVIT. The QR and inverse iteration sections were slightly
faster than RSPII equivalents, but the back transformation was noticeably slower,
making the total slower than the EISPACK3 routines called by RSPII. The routine
is not modular, indeed the back transformation and the inverse iteration sections
are intermixed.

180

Table 3. Seconds to diagonalize NESBET for n = 500

S. T. Elbert

Driver 3-Diag Values 3d-Vec Backtr Total p

A. FPS-164
RS 45.764 23.719 535.893 56.044 661.419
RS/FPS a - - - - - - - - 238.492
RSP 54.378 23.717 535.934 84.893 699.018
RSPII 54.378 18.130 17.625 84.893 175.027
RSPIIB 49.183 18.130 5.524 63.836 136.675
GDIAGD 207.143 12.681 535.853 84.944 840.724
GIVEIS 53.251 7.950 67.135 64.115 192.452
EVVRSP 54.112 2.409 7.491 63.954 127.966
EVVRSPTM a 16.493 2.409 7.492 36.224 62.618
GIVENS 221.086 109.438 15.304 85.418 431.545
HQRII 54.488 6.171 10.863 1 3 4 . 5 4 1 206.064
SHQRII 145.324 8.844 159.256 87.079 400.506

B. VAX-11/780
RS 987.39 453.31 5857.23 1025.76 8323.72
RSP 1051.55 486.63 5896.26 1687.75 9125.04
RSPII 1016.25 73.04 76.73 1713.74 2879.81
RSPIIB 1261.58 72.87 44.33 1 8 5 1 . 9 1 3230.75
GDIAGD 1199.87 462.98 5280.64 1554.52 8502.85
GIVEIS 1013.67 51.13 1863.59 1 8 2 5 . 5 1 4753.92
EVVRSP 1019.88 23.28 60.30 1 8 6 6 . 6 1 2970.13
LIGENB 1341.73 461.95 5541.59 2528.20 9873.50
GIVENS 1366.75 385.99 117.65 1 6 3 7 . 3 1 3509.68
HQRII 1196.81 49.25 75.39 2640.34 3961.84
SHQRII 1501.18 70.43 2073.42 2089.92 5734.98

C. NAS 9160
RS 26.316 14.076 127.654 32.809 200.857
RSP 31.042 14.273 130.146 66.795 242.316
RSPII 30.927 3.495 3.510 62.616 100.549
RSPIIB 9.283 3.544 1.583 12.277 26.687
GDIAGD 45.607 13.068 140.855 49.576 249.159
GIVEIS 28.039 2.311 12.158 12.349 54.858
EVVRSP 30.714 0.920 1.869 11.729 45.232
LIGENB 40.955 13.207 50.592 77.252 182.007
GIVENS 50.977 16.819 3.820 49.254 120.926
HQRII 34.409 2.157 2.237 77.381 116.185
SHQRII 39.157 3.728 38.762 45.567 127.214

D. Cray X-
MP/24 (1 proc.)
RS 2.434 5.416 9.900 2.901 20.651
RSP 2.375 5.416 9.905 4.767 22.469
RSPII 2.374 2.060 1.988 4.734 11.156
RSPIIB 3.016 2.060 0.672 3.875 9.622
EVVRSP 2.354 0.332 0.868 3.830 7.384

E. SCS-40/14
RS 7.411 22.418 42.518 7.668 80.016
RSP 7.250 22.422 42.522 13.177 85.397
RSPII 7.250 5.395 5.707 13.177 31.530
RSPIIB 9.388 5.393 2.338 12.503 29.623
EVVRSP 7.167 1.034 3.159 12.497 23.857

3.97E- 02
3.86E - 02
3.88E - 02
3.68E+00
3.68E + 00
1.01E-01
1.35E+01
3.81E-02
3.88E-02
1 . 0 1 E - 02
1.98E- 02
5.43 E + 03

1.94E- 02
2.17E-02
5.54E + 00
5.54E+00
4.29E - 02
7.82E + 00
1 . 0 4 E - 02
4.64E - 01
3.51E-02
2.76E - 02
7.08E+03

1.89E-01
1.93E-01
7.48 E + 00
7.48 E + 00
1.01E-01
3.90E+ 10
8.27 E - 02
2.30E + 00
6.40E - 02
8.51E-02
1.58E+04

5.53E-02
5.55E- 02
9.02E + 00
9.09E + 00
2.31E-02

5.53E- 02
5.55E-02
9.02E + 00
9.09E + 00
2.31E-02

a Uses APAL routines other than BLAS

Extracting more than a few eigenvectors from a dense real symmetric matrix 181

The most recent proposed improvement on H Q R I I is called SHQRI I [17]. This
is a good example of how not to improve a program. SHQRI I still produces the
wrong results for ONES, BORDER, HR ING2 , D I N D O N and HILBERT
observed for other versions of HQRII . Although the reporting of some trivial
input errors is improved, there is still no warning the routine has failed. The
divide check in N U L L is avoided, but new ones occur on the VAX for BORDER
and HRING2. The NAS generated an overflow on BORDER. Many additional
cases of poor and marginal performance showed up. It was slower (by nearly a
factor of two on the FPS) on all three machines. It uses a non-standard form of
packed storage (by rows instead of columns) that complicated the addressing.
The routine is much more complicated since it uses loop unrolling and jamming,
which defeat many vectorizing compilers. It is not modular, so the complexity
is harder to see through. A complicated quicksort using static local storage, with
no checks for stack overruns, was added with essentially no improvement in total
time (the change of an O(n 2) step to O(nlog2(n)) in an O(n 3) algorithm is nearly
negligible). An inflexible C O M M O N block is used to transfer parameters and
data (what per cent of the time is saved this way in an O(?l 3) routine?).

EVVRSP is an attempt to produce a routine that gets high ratings for each of
the seven desirable attributes; combining the reliability and accuracy of RS with
the speed of RSPII, or rather RSPIIB since the replacement of PYTHAG with
S / D N R M 2 in T INVIT has already been shown to be advantageous. It should
be clear by now that one wants to use EISPACK as a starting point because,
even though not perfect, it has the most carefully thought out codes available so
far.

There are two key changes that improve TINVIT ' s reliability and accuracy. The
first is to scale up the value of EPS3. This increases the magnitude of the initial
guess vector and reduces the number of situations where T I N V I T fails to converge.
Unfortunately it also reduces the accuracy of the vector, but that may be partially
offset by the second change, which is to force one more iteration after convergence.
This is actually nothing more than following Wilkinson's original suggestion [18].
It is a good idea even if the value of EPS3 is not increased. T INVIT is the only
inverse iteration routine examined that allowed an exit after only one iteration.
The result of this can be disastrous and lead to the inclusion of H R I N G 2 as a
test matrix. The extra iteration does not take that much of the total time. The
problem of accuracy and convergence seems to call into equation the meaning
of the current convergence test. The amount to scale EPS3 is an empirical choice.
Too small a value does not aid convergence and too large hurts accuracy. With
a scale factor of 16, satisfactory converged results were obtained for all matrices
except D I N D O N a n d HILSEG. Of the nonconverged cases, only one result was
poor (D I N D O N , n = 45, on VAX), two were marginal (D I N D O N , n = 40; HIL-
SEG, n =45, on NAS) and the rest were satisfactory (TINVIT was further
modified to allow processing to continue even when not converged). This suggests
the possibility of proceeding, albeit with caution, even after T INVIT warns of
non-convergence. The fewest cases of non-convergence occurred with a scale
factor of 64, but at the cost of an increase in the number of marginal results.

182 S.T. Elbert

Instead of using IMTQLV to find the eigenvectors, as RSM and RSPII do,
TQLRAT was modified to support the sub-matrix blocking that is an advantageous
feature of TINVIT. The inner loop of TQLRAT was modified to remove an IF
statement, permitting the loop to vectorize. The inner loop of IMTQLV computes
a square root that inhibits vectorization on most machines, but there is no square
root in the inner loop of TQLRAT. The modified TQLRAT is generally three or
more times faster than IMTQLV. EISPACK warns that TQLRAT may not be
accurate enough for TINVIT, but so far that does not seem to be the case. There
are faster and more reliable algorithms than TQLRAT available [7] and they will
be implemented as time permits.

TRED3 was modified so that the vectors p~ and qi are constructed in a separate
subroutine as is the rank 2 update. Each of these new, easy to tune, routines
carries out 1/3n 3 MAO's after being called n times. The new routines are similar
in function to two of the recently proposed level 2 BLAS [19] (S /DSPMV and
S/DSPR2). The modified routine, ETRED3, makes more reasonable choices
about when a row and column are already in correct form to machine accuracy.
It can therefore, skip matrices that are already tridiagonal and does not have the
robustness problems seen in TRED2 and TRED3 when dealing with the ONES
matrix (Table 1).

5. FPS-X64 implementation

The FPS-X64 series of computers is perhaps unique in the way that it compiles
FORTRAN code directly into microcode, with all the concurrency control of the
functional units that implies. Hardware pipelines are common now in everything
from microprocessors to supercomputers, but rarely is the user able to control
these resources on a cycle by a cycle basis. Each 64-bit instruction can control
a variety of independent functions simultaneously and one instruction may be
issued every cycle. The functional units include a three stage multiply pipeline,
a two stage add pipeline, a three stage main memory pipeline, a two stage table
memory pipeline, an integer arithmetic unit and a branch control unit.

The power of the instruction set may be seen in the fact that the loop needed to
carry out the dot product of two vectors may be expressed as a single instruction.
This is accomplished with a technique called software pipelining that rolls the
elements of the operation as they would be performed sequentially into a set of
overlapped microinstructions. In the case of the dot product, the operations that
would take seven cycles if done sequentially may be treated as a seven stage
pipeline consisting of a single instruction, producing a floating point multiply
and add (2 FLOPS) every cycle. This is the full theoretical speed of the machine
and it can be sustained with these limitations: versions of the machine with
dynamic memory will lose about 4% of their throughput when the machine stops
to refresh the contents of memory (static memory does not need refreshing), the
addressing must be such that successive vector elements are not in the same
memory bank (bank conflict), and the length of the vectors is limited by the
amount of table memory.

Extracting more than a few eigenvectors from a dense real symmetric matrix 183

Table memory is a smaller, faster memory that provides an additional data pat h
to the arithmetic pipelines. These pipelines run at only half speed when all the
data must come from main memory because only one word is fetched Or stored
in a single cycle. With table memory, one vector element of the dot product may
come from each memory to keep the multiply pipeline going full speed while
the adder accumulates the result. A serious deficiency of the FPS-X64 FORTRAN
compiler is that it never uses table memory, so for most applications it can achieve
only half of the machine 's capacity at best. There are library routines that use
table memory and these may be adequate in many cases, but there are restrictions
that limit their usefulness. One restriction is that, since the data can' t normally
be generated in table memory, the values must be copied there at a cost of at
least two cycles per element. I f the vector is only used once, the throughput has
dropped below the level that would have been achieved without table memory.
The cost of loading the vector into table memory may be amortized over several
uses, as in a matrix-vector product, just as the startup cost of the pipelines may
be amortized over long vectors.

I f all code could be written in terms of dot products, it would not be so difficult
to make full use of the machine. Unfortunately the vector outer product, as
performed by the BLAS SAXPY, is an operation that occurs frequently and this
is more difficult for the X64 to handle. In the vector outer product, each element
of a vector is multiplied by a vector and added to a second vector that may be
stored as a third vector or back onto the second vector, an operation that needs
to access three vectors simultaneously in order to operate at full speed. SAXPY
thus requires two cycles using table memory and runs at half the maximum FLOP
rate; three cycles are necessary without table memory. The table memory version
of SAXPY, which can be expressed as a four stage, two cycle loop, is not normally
supplied by FPS. The use of specially coded versions of SDOT and SAXPY is
usually justified because the compiler generates an extra cycle for each of these
operations, yielding three cycle loops for SDOT and four cycle loops for SAXPY.

The two BLAS, SDOT and SAXPY, are sufficient to vectorize the key O(n 3)
loops in TRED3 and TRBAK3. In TRED3 the formation of Pi = Aiui consists of
a loop with both an SDOT and a SAXPY and the rank 2 update A i + 1 --

A~- u~qf-q~uf can be expressed, somewhat less effectively, as two SAXPY's. In
TRBAK3 a single SDOT followed by a SAXPY is all that is needed. The FPS-164
running at 5.5 MHz is capable of 11 MFLOPS. Without table memory and ignoring
overhead, the limit should be eight FLOPS in eleven cycles or four MFLOPS for
TRED3 and four FLOPS in five cycles or 4.4 MFLOPS for TRBAK3. For n = 500,
the F O R T R A N versions of TRED3 and TRBAK3 achieved 3.1 and 2.9 MFLOPS
or 77 and 66% of tile limit. For TRED3 the compiler actually did better than
would have been possible with FORTRAN BLAS, which would have yielded 2.9
MFLOPS. The compiler was able to exploit redundant memory references in the
loops that disappear when the BLAS are used. Nevertheless, using the BLAS
changed the performance to 3.4 and 3.9 MFLOPS and 85 and 89% of the no
table memory limit. I f table memory versions of SDOT and SAXPY were used,
TRED3 would use only seven cycles for 6.3 MFLOPS and TRBAK3 three cycles

184 s.T. Elbert

for 7.3 MFLOPS. The architecture thus places a significant constraint on the
straightforward implementat ion of the algorithm.

It is possible to overlap the memory fetches of the first inner loop in TRED3
because elements of Ai appear in both the inner and outer product expressions.
The outer product port ion of the loop then has only two memory references to
contend with instead of three. The result is four FLOPS in two cycles instead of
three cycles and maximum efficiency is achieved. To accomplish this, Pt should
be in table memory, because both its input and output elements have to be in
the same memory and the overhead to put At in table memory would be too
large. This approach is unworkable because of another unfortunate constraint;
a store to table memory and an add can't be performed in the same cycle. That
means three of the four memory references must be to main memory, which
unbalances the situation again. Unrolling the inner loop to a depth of two would
use four instructions involving two references to At but still only two references
to Pt. All the addressing can' t be handled in four instructions however. It was
finally necessary to unroll to a depth of 8, producing a two stage, 16 cycle loop
performing 32 FLOPS. It should be noted that 16 is the maximum number of
instructions the loop branch could handle given everything else that was going
on. Even at this level of complexity it was not possible to guarantee an absence
of bank conflicts. I f the first elements of Ai and Pt are in the same bank, the loop
takes an extra cycle to complete. With a large At, arranging Pt to be stored after
At should avoid this situation. Handling the special cases required by such
extensive unrolling resulted in a routine with nearly 500 instructions (the source
code has over 4000 lines of text). This much code adds somewhat to the overhead
because now the machine must stop occasionally to reload the instruction cache
from memory.

Coding the rank 2 update in TRED3 directly saves a memory store, resulting in
four FLOPS and four memory accesses for two instructions. Again, to gain enough
instructions to do the addressing, the loop was unrolled to a depth of two resulting
in a three stage pipeline of four cycles. To reduce indexing this time, the vectors
Pt and qt were interleaved in table memory. By calling these two APAL routines,
TRED3 achieves 10.1 MFLOPS on the 164 for n = 500, or 92% of the limit.

The back transformation, a relatively simple routine, was coded entirely in APAL
to avoid the overhead of n 2 calls to the level 1 BLAS. It achieved 6.9 MFLOPS,
or 94% of the 7.3 MFLOPS possible with the straight use of table memory versions
of SDOT and SAXPY. I f two reflectors are accumulated at a time, the vector
matrix update can be expressed as

Z j + 1 = Z j - h,utvf r
- ht+l ut+l wt+l

at a cost of O(n 2) additional MAO's. Here ht = 1~Hi, v f = u f Z and
T T

Wi+l = / .) t + l - h i (U i + l U i) I)T.

This is now similar to the rank 2 update in TRED3 and could be implemented
with either vt and w~+l or ut and Ut+l in table memory. The latter has the
disadvantage of requiring a copy from main memory to table memory, but the

Extracting more than a few eigenvectors from a dense real symmetric matrix 185

advantage or sequential addressing in Z. The former could be created in table
memory but would require careful coding to avoid bank conflicts in Z, which is
addressed by row. Ir.L either case, performance near the machine's theoretical
limit should be possible for TRBAK3 just as it is for TRED3.

6. Conclusion

Choosing the best routine to extract from 10-100% of the eigenvectors from a

dense real symmetric matrix is not a simple matter. If not all the vectors are
needed, the choice is narrowed to a routine using the inverse iteration method.
None of the routines tested converged in all cases, so only routines that warn of
a failure to converge should be considered. The EISPACK 3 inverse iteration
routine TINVIT, although returning convergence information, was not as accurate
as some other inverse iteration routines. EINVIT (a modification of TINVIT and
one of a set of routines driven by EVVRSP) converges more often, with greater
accuracy and in less time than the original.

If all the vectors are needed, the choice is more complicated. The speed and
accuracy for each of the routines to find all the eigenvectors of a NESBET matrix
of dimension 500 is given in Table 3 for each of the three machines used to
measure portability. Similar results for the EISPACK 3 based routines is also
given for a Cray X-MP/24 (using only one processor) and an SCS-40/14 which
is compatible with the Cray machine. The extent of the compatibility is reflected
in the complete agreement of the values ofp. If accuracy, reliability and compact-
ness are more important than speed, then RS is the best choice. If speed is the
major consideration, then inverse iteration routines should be considered.
Although EVVRSP was among the fastest routines on all the machines tested, it
is relatively easy to tune the key O(n 3) parts of any well-written, modular routine
to make it competitive on a given machine. Unfortunately, the architectural
features of the fast machines currently available make them sensitive to different
tuning techniques. What works well for the FPS may be detrimental for other
machines. On vector machines, it is likely that the nominally O(n 2) sections will
impact, or even dominate, performance if they are not vectorized, except for very
large values of n. This is particularly true of inverse iteration methods, where
partial pivoting in the Gaussian elimination is not readily vectorizable. Some
consideration of these points was made in EVVRSP, where the QL section and
the orthogonalization process in the inverse iteration section now vectorize; but
more work needs to be done.

High memory bandwidth (with interleave levels adequate to avoid bank conflicts)
would make the coding of these algorithms much easier and more general while
maintaining high levels of theoretical capacity. What is really needed is multiple
(at least three) data paths and compilers that know how to use them. In the
meantime, tuning general routines like EISPACK to specific architectures can
achieve significant increases in throughput. The FORTRAN version of E W R S P
is available upon request through BITNET. The requests should be sent to
ELBERT@ALISUVAX.

186 S.T. Elbert

Acknowledgement. Time on the NAS 9160 provided by the Iowa State University Computation Center
is gratefully acknowledged.

References

1. Davidson ER (1975) J Comput Phys 17:87
2. Lanczos C (1950) J Res Nat Bur Stand Sect B 45:225
3. Schwenke DW, Truhlar DG (1986) Theor Chim Acta 69:175
4. Jacobi CGJ (1846) J Reine Angew Math 30:51 (see [7] for a review of modern methods)
5. Householder AS (1958) J Soc Ind Appl Math 6:6
6. Givens W (1954) Numerical Computation of the Characteristic Values of a Real Symmetric

Matrix, ORNL-1574, Oak Ridge National Laboratory, Oak Ridge, Tenn
7. Parlett BN (1980) The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ
8. Smith BT, Boyle JM, Garbow BS, Ikebe Y, Klema VC, Moler CB (1976) Matrix Eigensystem

Routines, Lecture Notes in Computer Science 6, 2nd ed., Springer, Berlin Heidelberg New York
9. (a) DIAGDN, WILKWP, WILKWM, ONES, BORDER, FRANK, MOLER, DINDON and

HILSEG are described in Nash JC (1978) Compact Numerical Methods for Computers: linear
algebra and function minimisation, Appendix 1, John Wiley and Sons, New York; (b) WILKWP
and WILKWM are also described in [17]; (c) NESBET is described in Moler CB, Shavitt I (eds)
(1978) Numerical Algorithms in Chemistry: Algebraic Methods-LBL 8158. Lawrence Berkeley
Laboratory, University of California, Berkeley, CA

10. Dongarra JJ, Moler CB, Bunch JR, Stewart GW (1979) LINPACK Users Guide, SIAM, Phil-
adelphia

11. Wilkinson JH, Reinsch C (1971) Handbook for Automatic Computation, Volume H-Linear
Algebra, Springer, Berlin Heidelberg New York

12. APMATH64 Manual, Floating Point Systems, Portland (1985)
13. Hehre WJ, Random L, Schleyer P yon R, Pople JA (1986) Ab Initio Molecular Orbital Theory,

Wiley-Interscience, New York
14. (a) Dupuis M, Sprangler D, Wendolowski JJ (1980) NRCC Software Catalog 1, Program No.

QG01 (GAMESS), Lawrence Berkeley Laboratory, University of California, Berkeley, CA; (b)
Moler CB, Spangler D (1980) NRCC Software Catalog 1, Program No. ND03 (GIVEIS), Lawrence
Berkeley Laboratory, University of California, Berkeley, CA

15. Quantum Chemistry Program Exchange, Chemistry Department, Indiana University,
Bloomington

16. (a) Beppu Y, Ninomiya I, (1982) Comput Chem 6:87 (b) Ramek M (1984) Comput Chem 8:227
17. Toma~i6 ZA (1985) Comput Chem 9:123
18. Wilkinson JH (1965) The Algebraic Eigenvalue Problem, Clarendon Press, Oxford
19. Dongarra, JJ, Du Croz J, Hammarling S, Hanson RJ (1986) Mathematics and Computer Science

Division Technical Memorandum No 41, Argonne National Laboratory, Argonne, IL

